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Cobalt-catalyzed Cross-coupling Reaction of Chloropyridines with Grignard Reagents
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Treatment of 2-chloropyridine with benzylmagnesium
chloride in the presence of a catalytic amount of cobalt(Il)
acetylacetonate in dioxane afforded the corresponding cross-
coupling product in excellent yield. Trimethylsilylmethyl and
phenyl Grignard reagents also participated in similar cross-
coupling reactions.

Transition metal-catalyzed cross-coupling reactions are
among the most important carbon—carbon bond forming reac-
tions in organic synthesis.! Cobalt-catalyzed cross-coupling re-
actions have realized, without suffering from B-hydride elimina-
tion, the utilization of alkyl halides.> In order to expand the
scope of the cobalt-catalyzed reactions, we examined cross-cou-
pling reactions of aryl halides with several Grignard reagents.
Here we report a cobalt-catalyzed reaction of chloropyridine de-
rivatives with Grignard reagents. Chloropyridines seem unlikely
to undergo cross-coupling reaction, due to the strong carbon—
chlorine bond.*

Treatment of 2-chloropyridine (1, 1.0 mmol) with benzyl-
magnesium chloride (3.0 mmol) in dioxane (3 mL) in the pres-
ence of cobalt(Il) acetylacetonate (0.10mmol) for 30 min at
25°C afforded 2-benzylpyridine (2) in 81% yield (Eq. 1).%6
Use of 1.5 mmol of the Grignard reagent and 0.05 mmol of the
cobalt salt led to a slightly lower yet satisfactory yield of 2
(73%). Dioxane is a proper solvent, and reactions in ether or
THF resulted in low conversions. Other cobalt salts such as
CoCl; and CoClj also catalyzed the reaction, although the yields
were lower by ca. 10%. Neither lower nor higher temperatures
improved the yield of 2. The starting material 1 was completely
recovered without any cobalt catalysts.
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Surprisingly, the reaction of 2-iodopyridine afforded 2 in
only 45% yield, where the starting material was completely
consumed and a significant amount of 1,2-diphenylethane was
obtained (Eq. 2). The bromo analogue was less reactive so that
2 was obtained in 40% yield, along with 19% recovery of the
starting material. Seemingly promising leaving groups such as
p-toluenesulfonate and trifluoromethanesulfonate resisted the
reaction. Attempts to transform 2-fluoropyridine resulted in
failure. Under the cobalt catalysis, 4-iodoanisole and 4-trifluor-
omethyl-1-chlorobenzene failed to react and both remained
unchanged.
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Trimethylsilylmethyl Grignard reagent also participated in a
similar cross-coupling reaction to yield 2-pyridylmethyltrime-
thylsilane in 68% yield (Table 1, Entry 1). Phenylation at
25 °C resulted in low conversion (Entry 2) and required a higher
temperature to proceed to completion (Entry 3). Installation of
hexyl group was unsuccessful, competing with reduction that
produced pyridine (Entry 4). The reaction with allylmagnesium
chloride, even at —20°C, failed to isolate 2-allylpyridine and
yielded a complex mixture (Entry 5). Attempted methylation
and vinylation left 1 intact. Reaction with 1-phenylethyl
Grignard reagent afforded no trace of the corresponding
coupling product, instead giving pyridine.

Table 1. Reaction of 2-chloropyridine (1) with various
Grignard reagents

Co(acac)s (0.10 mmol)

| A RMgX (3.0 mmol) | X

N/ Cl dioxane, 30 min N/ R

1 (1.0mmol)

entry RMgX Temp/°C Yield/%
1  (CHj);SiCH,MgCl 25 68
2 PhMgBr 25 17 (33% of 1)
3 PhMgBr 50 (bath temp.) 73
4 "C6H13MgBr 25 15
5 CH,=CHCH,MgCl -20 complex mixture

A variety of combinations of chloropyridine derivatives and
Grignard reagents were surveyed (Table 2 and Eqgs. 3 and 4).
3-Chloropyridine (3a) was transformed into 3-benzylpyridine
(4a) in moderate yield (Table 2, Entry 1). Unfortunately, the re-
action of 4-chloropyridine yielded no desired product. Benzyla-
tion was so efficient that dibenzylation occurred to yield 4c¢ in
fair yield with contamination by a trace of the monobenzylated
product (Table 2, Entry 3), whereas trimethylsilylmethylation
led to selective conversion of the chlorine at the 2 position
(Table 2, Entries 7 and 8).

Interestingly, benzylation reactions of 3d bearing an alkene
moiety proceeded smoothly (Table 2, Entry 4), albeit the reactiv-
ity of 3d is lower than that of 1. Chloropyridine 3d is a compe-
tent substrate for allylation to obtain 7 in 72% yield (Eq. 4).
These facts stand in sharp contrast to the intramolecular
5-exo-trig cyclization reaction of 2-iodophenyl prenyl ether that
was previously reported.” The selective cross-coupling without
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Table 2. Cobalt-catalyzed benzylation and trimethylsilylme-
thylation of chloropyridine derivatives

Co(acac), (0.10 mmol)
PhCH,MgCl (3.0 mmol)

ArCl Ar—CH2Ph
dioxane, 25 °C, 30 min

Entry ArCl Product Yield/%
~ cl S
1 N~ 3a N~ 4a 47

4c 42

Co(acac), (0.10 mmol)
(CHgz)3SiCHoMgCI (3.0 mmol)
ArCl Ar-CH3Si(CHg)s
dioxane, 25 °C, 30 min

Entry Ar—Cl Product Yield/%
SIS
5 ol e NP SICHIs g 52

SOWNSOY
6 N”>Cl 3b NT - SiCHa)s 5 7

.

7 c” >N cise o N7 SiCHa)s 5¢ g7
Clm Cl | N

8 N N SiCHe)s 5 g

the possible cyclization is suggestive of the absence of the
2-pyridylcobalt or 2-pyridyl radical intermediate. Alternatively,
cobalt-mediated SyAr reaction might be included. Exact
reaction mechanism is not clear at this stage.

Co(acac)s (0.10 mmol)

PhMgBr (3.0 mmol) X
3b (©)
dioxane, 50 °C (bath temp.) N~ >Ph

6 74%

30 min

Co(acac)s (0.10 mmol)
CH>=CHCH>MgBr (3.0 mmol)

dioxane, 25 °C, 30 min
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